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Overview 
 
The GTX program at NASA Glenn Research Center is designed to develop a launch vehicle 
concept based on rocket-based combined-cycle (RBCC) propulsion [1].  Experimental testing, 
cycle analysis, and computational fluid dynamics modeling have all demonstrated the viability of 
the GTX concept, yet significant technical issues and challenges still remain.  Our research effort 
develops a unique capability for dynamic CFD simulation of complete high-speed propulsion 
devices and focuses this technology toward analysis of the GTX response during critical mode 
transition events.   Our principal attention is focused on Mode 1/Mode 2 operation, in which 
initial rocket propulsion is transitioned into thermal-throat ramjet propulsion.  A critical element 
of the GTX concept is the use of an Independent Ramjet Stream (IRS) cycle to provide 
propulsion at Mach numbers less than 3.  In the IRS cycle, rocket thrust is initially used for 
primary power, and the hot rocket plume is used as a flame-holding mechanism for hydrogen fuel 
injected into the secondary air stream.  A critical aspect is the establishment of a thermal throat in 
the secondary stream through the combination of area reduction effects and combustion-induced 
heat release.  This is a necessity to enable the power-down of the rocket and the eventual shift to 
ramjet mode.    
 
Our focus in this first year of the grant has been in three areas, each progressing directly toward 
the key initial goal of simulating thermal throat formation during the IRS cycle: 
 

• CFD algorithm development 
• Simulation of Mode 1 experiments conducted at Glenn’s Rig 1 facility 
• IRS cycle simulations 

 
The remainder of this report discusses each of these efforts in detail and presents a plan of work 
for the next year.  
 
CFD Algorithm Development 
 
The key tool used in this research is a validated Navier-Stokes solver for unsteady reactive-flow 
calculations on massively parallel machines [2–4].    Several enhancements have been added to 
this solver during the past year to make it more suitable for simulations of the complete GTX 
engine flowpath.  These include: 
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Fig. 1:  Typical grid for GTX 
calculations 

1.) Addition of modified Menter and Wilcox ’98 turbulence models.  The original code used 
the Menter hybrid k-ω model with the shear-stress transport (SST) modification as its baseline 
turbulence model.   In comparing with cold-flow Rig 1 data (discussed later), it was found that 
this model tended to produce larger regions of flow separation than indicated in the experimental 
data.  This is a known weakness of the SST modification, but the obvious fix of simply removing 
the SST modification lead to excessive growth of turbulence kinetic energy in corner regions, 
where the grid spacing was not (apparently) small enough to allow for the proper near-wall 
behavior for the turbulence frequency ω.   A solution was found by restricting the SST 
modification to the laminar sublayer of the boundary layer.   This prevented excessive growth of 
turbulence kinetic energy while alleviating the tendency of the original SST model to reduce eddy 
viscosity within separated-flow regions.    Before this simple fix was identified, we also coded the 
Wilcox ’98  k-ω model, which is supposedly less-sensitive to free-stream values than the original 
k-ω model.    Our results with this model were decidedly inferior to those of the Menter variants 
and as such, this addition was not pursued further. 
 
2.) Addition of a patched grid procedure.   The requirement to resolve details of the fuel 
injection ports located around the perimeter of the cowl required the addition of a grid patching 
procedure to allow better circumferential resolution of these features.  This implementation 
follows from general procedures developed in [5], and it allows for conservative interpolation of 
data among patched grid regions.  A procedure for integrating these regions within the MPI 
message-passing framework was also developed.   
 
3.) Addition of better implicit coupling among blocks:  One of the issues in applying implicit 
methods to solve large multi-block problems is a loss in effectiveness as the block numbers 
increase.   This is due to the fact that there is typically no mechanism to couple solution 
corrections generated on one block with those generated on a neighboring block.  We have 
devised a sub-iterative strategy that provides better information transfer among blocks and thus 
more rapid information transfer throughout the domain.  The sub-iteration procedure attempts to 
solve the linear system formulated at each block more accurately while also accounting for 
coupling with neighboring blocks.   Though more work per iteration is required, the additional 
robustness provided by this procedure makes it a useful addition. 
 
4.) Addition of time-derivative preconditioning.   Some of the GTX conditions result in large 

pockets of low Mach number flow in the 
engine.   One way of alleviating time-step 
restrictions and enhancing the overall 
convergence rate is through the use of time-
derivative preconditioning [6,7].  We have 
implemented a preconditioning algorithm 
described fully in Ref. [8] and are currently 
examining its effectiveness in accelerating the 
GTX calculations. 
 
Other aspects of the simulations are as follows.   
GridGen Version 14 is used to generate grids 
for the GTX engine.  These are somewhat 
complex due to the need to blend the circular 
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rocket exit plane with the semicircular combustor section.  Half-plane symmetry is invoked for all 
calculations.  The grid sizes used in this investigation range from about 0.4 million grid cells to 
about 3.3 million grid cells, depending on the case.   A sample grid is shown in Figure 1.  As of 
now, we are using Tecplot Version 9 for visualization.  Later this year, we will receive $10,000 
from the NCSU College of Engineering as part of the cost-sharing agreement for this grant.  We 
will use this to purchase a high-end Dell graphics workstation and will load the Ensight Gold 
visualization package on it.  We expect that this will facilitate the production of quality 
animations of time-dependent flowfield responses during later stages of this investigation.  
 
Simulation of Mode I Experiments in the Rig 1 Test Facility 
 

Simulations of two cases were carried out with no 
rocket or secondary fuel injection.  These two cases 
corresponded to ESP #41 and ESP #39 from the 
Rig 1 test matrix. Both cases correspond to 9.94 
lbm/s of air flow and an inlet total temperature of 
547 R.  The difference between the two cases is the 
back pressure, which is 3.1 psi for the ESP #39 case 
and 8.2 for the ESP #41 case.  These cases were 
performed on an incorrect version of the geometry 
prior to the 2002 JANNAF conference, so they 
were repeated with geometry corrections and the 
changes to the turbulence model outlined above.  
The total number of grid cells is about 2.2 million. 
Figure 2 and Figure 3 present pressure distributions 
along the centerbody/flat plate surface and along 
the cowl surface at the y = 0 plane.  The scale of 
the x-axis is referenced to station #3.  Both cases 
resulted in a transition to supersonic flow at the 
minimum area location (station #2), followed by a 
compression and expansion region resulting from 
the changing flowpath area profile.  Downstream 
of about x = -15, the two solutions differ.  Both 
cases contained large regions shock-induced 
separated flow.  In order to correctly model the exit 
plane, the grid was extended to x = 100 inches by 
extruding the exit plane as a straight semicircular 
duct.  The ESP #39 simulations matched the 
experimental pressure along the cowl surface, but 
along the centerline, there were deviations from the 
experimental data caused by a difference in shock 

and expansion wave locations.  The ESP #41 case matched the experiment almost exactly along 
both surfaces for the entire length of the rig. 
 
Several ejector-ramjet (ER) runs have also been completed to date.  ER operation corresponds to 
an operating rocket but no secondary fuel injection.  Of the ER cases completed, only case ER 
8687 had experimental data with which solutions could be compared.  This case corresponded to 
an inlet mass flow rate of 10.016 lbm/s, inlet total temperature of 413 °F, and inlet total pressure 
of 13.4 psi.  The rig back pressure is 2.6 psi, and the chamber pressure of the rocket is 750 psi.  
The oxidizer-to-fuel ratio of the rocket is 4 (4 parts oxygen by mass to 1 part hydrogen by mass), 
and the total number of mesh cells is about 3.3 million. 
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Fig. 2:  Pressure distributions for 
ESP #39 case 
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Fig. 3:  Pressure distributions for 
ESP# 39 case 
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Fig. 4:  Temperature contours for ER 8687 

 

 
Figure 4 shows temperature contours for this case.  Temperatures of around 2500 K are found in 
the flame front, while temperatures of around 3200 K are found where the rocket plume impinges 
on the flat plate.  The heat release is not enough to form a thermal throat, which is what would be 
expected for ER operation.  The rocket exhaust enters the combustion chamber at approximately 
1460 K, and the additional fuel in the exhaust ignites almost immediately.  The flame front can be 
seen in the OH contours, shown in Figure 5.  The mixing is incomplete, so the mixing layer does 
not extend through the entire air stream at the combustor exit. 
 
Figure 6 compares the centerline and cowl pressures with the experimental data.  The results are 
in good agreement with the experiment except for minor discrepancies along the cowl in the latter 
half of the combustor section.  The higher pressures are attributed to an over prediction in the 
amount of heat release. 

 
IRS Cycle Simulations 
 
Due to time limitations and other difficulties, no 
experiments corresponding to IRS cycle conditions 
were conducted in the Glenn Rig 1 facility this year.  
Over the last several months, we have attempted to 
simulate portions of the Rig 1 test matrix 
corresponding to IRS cycle conditions in an effort to 
determine strategies that lead to the proper response 
– the formation of a thermal throat in the secondary 
air stream followed by an expansion of hot reaction 
products to supersonic speeds. We have considered 
the Rig 1 geometry as the starting point and have 
used a smaller mesh of 0.8 million cells to allow for  
more rapid turn-around time.   Our initial efforts in 

simulating the IRS cycle were hindered by our specification of a constant mass flow rate at the 
inlet of the geometry.  While this is consistent with the manner in which the Rig 1 tunnel is 
operated, it does not appear to allow the formation of a stable thermal throat.  Rather, choke 
points are alternately established at the physical throat of the engine, at a location midway along 
the combustor, and at the combustor exit.   The solutions never converge as a result.    Our most 
current efforts follow Steffen and Yungster [9] by enforcing a constant total pressure, rather than 
a constant mass flow rate, at the inlet.  This allows the mass flow to adjust in response to heat 

Fig. 5: OH mass fraction contours for 
ER 8687 
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release, and as a consequence, we have made some progress in simulating IRS operation.   The 
current procedure for establishing a ramjet-type mode of operation in the secondary stream is as 
follows: 
 

1.) Obtain a partial solution of the 
engine flowfield under purely 
subsonic conditions by enforcing 
a back pressure only slightly less 
than the enforced total pressure.  
As shown in the temperature 
contours of Fig. 7a and the 
hydrogen mass fraction contours 
of Fig. 8a, this leads to a very 
fuel rich combustion process, 
with a flame extending across to 
the cowl. 

2.) Drop the back pressure to levels 
low enough to force an 
acceleration to sonic flow 
somewhere in the device.  

3.) Restart the solution and run until 
the mass flow rate stabilizes.   

 
 Due to our current choices for the secondary fuel injection conditions, the last process actually 
results in flashback upstream of the physical throat.  As the calculation converges, the flame 

position moves forward.  Figures 7, 8, 
and 9 present temperature, hydrogen 
mass fraction, and Mach number at 
different stages of the calculation.  After 
the flashback event, the flame front 
moves forward toward the nozzle exit. 
(Figs. 7b, 8b, and 9b).  The combination 
of an effective area decrease due to 
volumetric expansion of the rocket 
plume, combustion induced heat release, 
and combustor wall divergence results in 
a gradual transition to sonic and then 
supersonic flow in the secondary air 
stream.  This is nearly a ramjet mode 
response, with most of the combustion 
taking place upstream of the rocket exit 
plane and the combustor section serving 
as a nozzle for the expansion of hot 
products.  As the calculation continues, 
the mass flow rate increases, and the 

thermal choke point shifts downstream toward the combustor exit. (Figs. 7c, 8c, and 9c)   A 
secondary choke point is established downstream of the fuel injector locations.    As of this 
writing, this calculation has not yet converged and it is unclear what the final state will be.     
 
 
 

Fig. 8:  Hydrogen mass fraction 
contours during IRS cycle calculation 

Fig. 7:  Temperature contours during IRS 
cycle calculation 
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Plan of Work for Year 2 
 
As we have not yet been able to firmly 
establish proper IRS cycle operation, 
our attention for the remainder of this 
year will be focused toward this goal.   
If simulations based on the Rig 1 
conditions continue to be problematic, 
we will focus toward other points in 
the trajectory nearer to the point in 
which cycle analysis indicates thermal 
choking should first occur.   We will 
also investigate the effects of other 
reaction mechanisms for hydrogen 
combustion.  Steffen and Yungster 
were able to achieve a stable thermal 
choke point in their axisymmetric 
simulations using Jachimowski’s 

hydrogen oxidation mechanism. [10]  Once we have been able to converge to a thermally-choked 
solution, we will  
 

1.) Investigate modulation of the thermal throat position by varying the fuel injection 
conditions. Cycle analysis indicates that this is a key for high propulsive efficiency. The 
types of modulation may include shutting off portions of the injector banks or simply 
changing the injection pressure.  We will start from a converged solution for a particular 
positioning of the thermal throat and will vary the fuel injection conditions to shift the 
position upstream or downstream as necessary. We will conduct quasi-steady simulations 
of this type and if necessary, time dependent simulations.   We also hope to develop a 
better means of initializing the IRS simulations so that flashback effects are avoided and 
will repeat successful simulations on finer grids to gain an understanding of the grid-
independence of the predictions.  

 
2.) Investigate power-down of the rocket and flame stabilization during the shift to ramjet 

mode.  This will entail starting from a steady condition with an upstream positioning of 
the thermal throat, then powering down the rocket in a time-dependent manner.   Detailed 
animations of the response of the flowfield under power-down conditions will be 
extracted, and the results made available for use in designing future Rig 1 mode transition 
experiments.  

 
Publications  
 
Two publications have resulted from this work this year: 
 
1.) Steffen, C.J., Bond, R.B., and Edwards, J.R. “Three-Dimensional CFD Analysis of the GTX 
Combustor,” Proceedings of the 26th JANNAF Interagency Propulsion Committee Meeting,  
JANNAF/CPIA,  Destin, Fl. 2002. 
 
2.) Bond, R.B. and Edwards, J.R. “CFD Analysis of an Independently Fueled Ramjet Stream 
Operation in a Rocket Based Combined Cycle Engine,” Abstract accepted for presentation as 
AIAA Paper 2003-0017 at the 41st Aerospace Sciences Meeting, Reno, NV, Jan. 2003 

Fig. 9:  Mach number contours during IRS cycle 
calculations 
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Honors, Awards, and Other Miscellaneous Information 
 
Ryan Bond was awarded the Ziglar Graduate Fellowship in Aerospace Engineering for the first 
and second years of his Ph. D. study.   Ryan also tied for first place in the Ph.D category in the  
third annual MAE Department Graduate Student Research Posters Competition.  His poster 
emphasized his work on the GTX project.   Ryan also managed to pass his written Ph.D. 
preliminary exams and spent three weeks during the summer at NASA Glenn, working closely 
with the GTX team.  Jason Norris will be joining the NCSU team in January of 2003.  Jason 
obtained his Master of Science degree in Aerospace Engineering from NCSU in 1997and has 
been employed by Pratt & Whitney for the past five years.  Jason will pursue a Ph.D in the 
general area of high-speed aeropropulsion, and it is hoped that his work might be funded under 
the present contract.     
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